MAXIMIZING A CONVEX QUADRATIC FUNCTION OVER A HYPERCUBE

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximizing a Convex Quadratic Function over a Hypercube

This paper deals with a new algorithm for obtaining a global maximum of a convex quadratic function over a unit hypercube, which is a classical and tough combinatorial problem. The basic idea of our algorithm is to reformulate this problem as an equivalent bilinear programming problem and to apply cutting plane approach developed by the author for solving bilinear knapsack problem. It will be s...

متن کامل

Global Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints

For the problem of maximizing a convex quadratic function under convex quadratic constraints, we derive conditions characterizing a globally optimal solution. The method consists in exploiting the global optimality conditions, expressed in terms of ε-subdifferentials of convex functions and ε-normal directions, to convex sets. By specializing the problem of maximizing a convex function over a c...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Convex Envelopes of Multilinear Functions over a Unit Hypercube and over Special Discrete Sets

In this paper, we present some general as well as explicit characterizations of the convex envelope of multilinear functions defined over a unit hypercube. A new approach is used to derive this characterization via a related convex hull representation obtained by applying the Reformulation-Linearization Technique (RLT) of Sherali and Adams (1990, 1994). For the special cases of multilinear func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Operations Research Society of Japan

سال: 1980

ISSN: 0453-4514,2188-8299

DOI: 10.15807/jorsj.23.171